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Computational Investigations of Least -Squares 
Type Methods for the Approximate Solution 

of Boundary Value Problems * 

By Steven M. Serbin 

Abstract. Several Galerkin schemes for approximate solution of linear elliptic bound- 

ary value problems are studied for such computational aspects as obtainable accuracy, 

sensitivity to parameters and conditioning of linear systems. Methods studied involve 

computing subspaces (e.g., splines) whose elements need not satisfy boundary condi- 

tions. A Poisson problem study on the square produces computed error reflective of 

theoretical L2 estimates and Lo,, behavior optimal for smooth data but loss according 

to Sobolev's lemma for nonsmooth data. Insensitivity to parameters is evidenced. 

Analogous one-dimensional methods enhance the conditioning study. Studies are in- 

cluded for parallelogram and L-shaped domains. 

1. Introduction. The purpose of this paper is to present the results of several 
numerical experiments which have been performed with least-squares and related 
methods for the approximate solution of linear elliptic boundary value problems. We 
consider such computational aspects as obtainable accuracy, sensitivity with respect to 
weighting parameters, and conditioning of resulting linear algebraic systems for each of 
these methods, which have the common characteristic that the elements of the fimite- 
dimensional subspace in which the solution is approximated need not satisfy the bound- 
ary conditions of the problem. 

In Section 2 we describe the class of problems under consideration and develop 
the notation we will use. In Section 3, we present the three approximation methods 
with which the studies have been performed and include a theoretical result pertaining 
to a quadratic form of one of these methods. In Section 4 we discuss the particular 
computational details of our implementation of these methods; it is believed that these 
details may be of interest to some members of the scientific community. In Section 5 
we detail several experiments performed on the Poisson problem in the unit square and 
compare results with various approximating subspaces and bQundary weightings. In 
Section 6 we look briefly at some problems on other domains, including the L-shaped 
region. In Section 7 we present some analogous methods for two-point boundary value 
problems and use these mainly to examine conditioning behavior. We conclude in Sec- 
tion 8 with a discussion of results and a mention of ongoing experiments. 

2. The Problem. The class of boundary value problems upon which the experi- 
ments have been performed may be described as follows (we adopt the notation of [7]). 
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Let R be a bounded domain in RN with piecewise smooth boundary MR. (Bramble and 

Schatz in their original paper on least squares require that aR is C'; however, one of 

our aims is to study computationally domains, such as rectangles, for which this is 

violated.) 
We shall be interested in approximating the solution of the problem 

(2.1) Au=f inR, u=g on aR, 

where 
N N 

(i) Au = E a,j(x)D1Dj(u) + E b,(x)D,(u) + c(x)u 
ij= i=l 

and A is uniformly elliptic in R; that is, there exists a constant C > 0 such that 

N 

C-I iW 1 < ajitiZ | C lt l 

for all x = (X1, X2 ... ., XN) ER and t E RN. 

(ii) Di = a/axi and all coefficients aii bi, and c are assumed to be real-valued 

and C- in R. 
(iii) The data satisfy (at least) f.E L2(R), g E L2(aR)-additional smoothness on 

g is required to obtain optimal error estimates in [7] and [4]. 
When R is a smooth domain, the problem (2.1) is viewed in a weak form [71, 

wherein the data is approximated by C' data (fn, gn ) which converge in appropriate 

Sobolev spaces (see below) to the data of (2.1) the problem is solved for smooth solu- 

tion un, and a limit used to define u. However, this process fails in domains with 

corners. Although theoretically our problem should also be viewed in a weak sense, for 

computational purposes, solutions will be obtained in the classical sense. 
The following notation will be used: On L2(R) and L2(aR) we have the respec- 

tive inner products (4, 4) = fR O; dx and (k, 41) = faR4 4da. 

Let Q be a fixed open set containing R. Ifn(Q) and HM(MQ) are the Sobolev 

spaces of order m of functions Q and M respectively with norms denoted by 11 t t1Q 

and . In. (See [14] for definitions of these spaces when M is C'; in the case of 

polygonal domains, though, a different definition of H'm(aM), due to Kellogg [211 is 

appropriate.) Denote H(rQs) - Hr(Q) x 13(aM). S% k is any finite-dimensional sub- 

space of Hm(&) which satisfies the approximability assumption: 

(2.2) For any u E Hk(R), k > m, there exists a constant C (independent of the 

parameter h and of u) such that 

m 
inf I jl XIQ<Chk "Ull k 

xESh,k j=O 

This is not exactly the assumption of [4], but for many practical subspaces, both as- 

sumptions hold. 
We shall make a particular choice of such subspaces (splines) below; we mention 

also some other subspaces that have been studied by others. S. Hilbert [13] details 
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the construction of multi-dimensional Hermite functions. Schultz [17] has studied 
many such spaces on rectilinear domains in RW. Strang [20] gives several examples and 
presents easily verifiable conditions for pointwise approximation of smooth functions to 
specified order and also for L2 approximation. Bramble and Zla'mal [8] and 
Di Guglielmo [9] use subspaces in which the "elements" (here, the support of the trial 
functions) are nonrectilinear and thus have better chance of conforming to irregular 
boundaries. 

Finally, we require the Dirichlet integral 

'S,X R._N aXf aX. 
=1 1 

and denote by V/i the outward normal derivative, V, the outward normal derivative, 

V, v the surface gradient for v E H1 (aR), and y > 0 and 0 < h < I parameters. 

3. Methods. I. The least-squares method of Bramble and Schatz [7] may be 
described as follows: For (f, g) E M(? 0), the solution u to (2.1) minimizes over 
Hmn(R) (m = 2 here is the order of the differential operator) the functional 

(3.1) G(X) = Ilf-AX!12 + yh-3 Ig-X12 

(where the zero subscript on the norms has been omitted). Equivalently, if we define 
the bilinear form 

(3.2) L(41, X) (A41, Ax) + yh-3 (VI, X), 

then u satisfies 

(3.3) L(u, X) = (f, AX) + Pyh-3(g, X) 

for all X E H2(R). 
We define Sh k to be the restriction to R of Sh, k().- The approximation 

method, using the Galerkin idea, is to find w E Shk such that 

(3.4) L(w, X) = (f.Ax)+'y1f3(g, X for all X E S2 k. 

For computational purposes, we select a basis { Os I im= of Sh k' (M is inversely pro- 
portional to a power of h) and setting w = ss, (3.4) yields 

M 
(3.5) , CSL(0s, Or) (f, A Or) + zyh Od,?r) r = 1, M. 

s=1 

The matrix of this problem is symmetric, positive definite, and with the choice of 
basis discussed below, a band matrix. Fix and Larsen [11] provide the result 
that the spectral condition number of the least-squares matrix behaves as O(h-'); in 
view of the fact that the usual Rayleigh-Ritz methods are known to demonstrate 
O(h-2) conditioning, an investigation of possible ill effects of roundoff in (3.5) is thus 
indicated, and those studies are presented in Section 5. 

We also study what happens if aR is not C', the sensitivity with respect to the 
weight y, and compare obtainable accuracy vs. theoretical estimates. The original error 
estimates for domains with C' boundary which were obtained by Bramble and Schatz 
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have been verified and their proofs simplified by Baker [4]. The particular estimate 
with which we shall be concerned may be stated: 

Suppose R is a bounded domain with C' boundary. If u E HS(R) for 2 < s S k 

(k > 4) satisfies (2.1) and w E 5h k satisfies (3.4), then the L2 error satisfies 

(3.6) 11 u - w 11 Chs 11 u luS. 

This says that the least-squares technique reproduces the order of best approximation, a 
condition we shall refer to as being "optimal". 

In [19] we obtain a like result for k > 4 when R is the unit square, but for 
brevity's sake we shall not include this proof. Note that the proofs do not hold for the 
case k = 3, and we shall investigate this in Section 5 to see if the techniques of proof are 
at fault or if indeed one cannot achieve optimal accuracy. 

II. Now, let A = -A (A is the Laplace operator; Au = Ey 3a2u/ax2). Let us 

write the boundary value problem in weak form: 

(3.7) -(-f-Au, X) + (g-u, yh-V1-X - ) = 0 for all X E H2(R) 

which can be rearranged as 

. (f8 X) + (g, y 1X-Xn ) = -(Au, X) + (u, yh1X-XnX ) 
=D(u, x) - (x, un)-(u, Xn) + h (u, X) 

using Green's theorem. If we define the bilinear form 

(3.9) N(?l, X) = D(P, X) -(' Xn )(X, uJn )+ 'yh- 1J X) 
our problem becomes 

(3.10) N(u, X) = (fX X) + (g, yh 1X-Xn) 

Nitsche's method [15] is then: Find w E S" such that 

(3.11) N(w, X)- (f X) + (g, yh -1X-Xn) for all X E Sk. 

Some of the properties of Nitsche's method for smooth domains with solutions in 

H2(R) are 
(i) L2 error estimates are optimal for k > 2. 

(ii) The condition number is O(h-2). 

(iii) But, "inverse theorems" (bounding higher Sobolev norms by lower ones with 

appropriate loss of powers of h) are required on the computing subspaces in order to 
make N(4i, 4i) positive definite. 

III. Bramble and Nitsche [6] have combined their methods in order to utilize 
the best properties of each. We define the bilinear form 

3 12 ~Ko 
6P, 

X)-=D6P, X) - ( Xn ) -(X. /n) 
(3.12) + h2(AX, A4) + 7h-1 (4, X) + 'yh(VS4', VsX) 

Method Ko then becomes: Find w E Sc k such that 

(3.13) KO(w, x) = KO(u, x) = (f-X + h2AX) + (g, yh-lx-Xn) 
+ (v g, yhV X) forall XES ( .. 
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This method has Ko(4, 4) positive definite for all y > yo and hence we seek both 
theoretical and computational estimates for myo The proof of the following may be 
found in [19]. 

PROPOSITION 1. Let N = 2 and R be star-shaped. By this we mean that if x E 

aR and .the unit outward normal n exists at x (at all but possibly finitely many cor- 
ners), then x * n > K > 0. Suppose that I Xi I < XM and let a = XMIK. Then if y > y 
= '/(a ? a2 ? (a + )2), Ko(4, 4) > 0, 4 : 0. In particular, on the unit 

square K = 1, XM = 1, a = 1, and -y 1.8. Note that all constants are indepen- 

dent of h. 
Since a matrix is positive definite if and only if its eigenvalues are all positive, 

we may use the inverse power method to estimate the least eigenvalue for several 
values of h in R" when R is the unit square to obtain a comparison with y, which is 
a bound for all h. In Tables 3.1 and 3.2 we see that Ko(4, 4) is positive definite for 
,y > 1, while Nitsche's form N(4, 4) (for which the theoretical analysis was not done) 
is definite for y > 6.7. 

TABLE 3.1. Least Eigenvalue (X) in Modulus for Matrices of Method Ko 

h = 1/6 M= 81 h = 1/12 M= 225 

-y X yX 
4 .162 x 10-2 4 .168 x 10-2 

2 .120 x 10-2 2 .125 x 10-2 

1 .952 x 10-2 1 .992 x 10-3 

31/32 < 0 31/32 <0 

TABLE 3.2. Least Eigenvalue in Modulus for Matrices of Nitsche's Method 

h = 1/6 M= 81 h = 1/10 M= 169 

-y xy x 
7 .183 x 10-5 7 .214 x 10-5 

6.75 .281 x 10-6 6.75 .506 x 10-6 

6.71875 .806 x 10-7 6.6875 .847 x 10-7 

6.6875 < 0 6.5625 < 0 

IV. For practical purposes, we omit the tangential derivitives: 

(3.14) K(4, X) = Ko(4, X) - yh (V4, VX) 

The Galerkin equations are 

(3.15) E CsK(Os, Or) = (f,-Or + h2Akr) ? (g2 h1krh- br) 

where Green's theorem allows us to write 

K(Obs, Or) =- (r,, AO) - (Os, A0r) - D(Or, Os) 
(3.16) + h2 (A6r, _/b) + yh-1 I (, k. ) . 
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This method requires inverse theorems to get K(4, 4) definite, but its condition 
number is O(h-2). 

4. Computational Details. We have chosen to compute with subspaces whose ele- 
ments are tensor products of one-dimensional spline functions referred to by Babuska [2] 
as "hill" functions. These coincide in fact with B-splines defined by Schoenberg [16] and 
the resulting tensor products are just the splines in RN discussed by Bramble and Hilbert 

[5]. 
We define 4(X) = X[ l/2'(x) where X[a bJ(x) is the characteristic function of 

the interval [a, b] . Then, define recursively 4'k(X) = (4k- 1 * 4)(X). k has support on 
[-k/2, k/2], is a piecewise polynomial of degree (k - 1) and is Ck -2( -o, ??). Segethova 
[18] has developed a stable recursive procedure for generating representations-of the hill 
functions up to very high order, and we adopt her expansion method. We represent the 
hill functions and derivatives in local coordinates with Legendre polynomials P1(X) (or- 
thogonal on [-h,?]): Let 

N 
(4.1) k(X) = E 4jkPp(X) 

1=1 

and then 

(4.2) D'34'k(x) - k OkX(X 
- 

2 - 
)X[V-I-k2,V-k/2](X), 

where the a kg are coefficients given in [19]. 

For the square Rs = (0, 1) x (0, 1), we impose a uniform mesh of spacing h 
where h-1 is an integer and choose 

S2,k = Span (k( h ih) k( -Ih) 

i, j - - -I , + k- ] 

When A is a constant coefficient operator, the representation (4.2) and the orthog- 

onality of the Legendre polynomials allows the inner products in the matrices of (3.5), 
(3.11), or (3.15) to be accumulated by analytical means, in which only Euclidean inner 

products are performed. By suitable changes of variables, only terms of the form 

(4-3) C-I/2 0 
ka 

(X) 0 kg6x()d 

need be evaluated, and from (4.1) we obtain, with v + 5?x, 

1/2 =k( 1 
| 2ka?(X)ok#(X)dX = akvaa kgX 1 

The software has been designed to handle terms corresponding to mesh points near the 
boundary. 
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For special cases, e.g. A = A, the matrix has a very specific structure if we order 
the basis functions consecutively along horizontal rows: , = Pk((X - ih)/h) 

'Pk((Y -jh)/h) with s = Q-I )VA+ i and M = (h- I + k - 1)2. If we denote the 
matrix problem of (3.5) by Tc = d, the matrix T is a band matrix with upper band 
width equal to (k - 1i\I + k. Dividing the matrix into a block structure with M 
square blocks, each block assumes the same banded structure element by element as 
the overall matrix assumes block by block. In particular, tr+hIS+h = trs if both 
SUpp { r+A n aR } and supp { Or n aRR} are empty. Borrowing from a definition of 
Strang [20], we might call this structure quasi-convolution form; in this regard the 
matrix behaves quite like a finite-difference matrix. 

The data terms d must be accumulated by numerical integration. We have used 
Romberg quadrature to ensure as much accuracy as desired; in practice, quadratures 

using a small number of function evaluations would be used. Herbold [12] and Fix 
[10] treat the problem of selecting "consistent" quadratures for Rayleigh-Ritz schemes. 

Various techniques have been used to solve the linear systems; we finally selected 
a Cholesky decomposition modified for band matrices as being most efficient for rea- 
sonably small (M < 200) problems. 

The error quantities of interest in our experiments are Ilello, the L2 error, where 
e = u - w, and lle IIc, the supremum norm error for which sharp estimates do not 
exist. In attempting to determine the order of accuracy of a method, we assume that 
lie el = ChA as h -+ 0 and wish to determine X. The quantity which we actually com- 

pute is the error reduction 

= log ( IIe(h1) Il/11 e(h,) I1)/log (hi/h1), 

where hi and h1 are different mesh spacings. In [19], our tables present the computa- 
tions of Xii for all possible combinations of i and j; for brevity here we shall only 
tabulate 11,j+ 

We shall present evidence that the pointwise error exhibits oscillatory behavior. 
This requires that we estimate lIe 110 by Simpson's rule using at least eight points between 
mesh points; we use these same points to estimate lie II.. 

5. The Poisson Problem on the Unit Square. We now present the results of 
several computational experiments with the methods described in Section 3. We have 
selected for presentation here only a portion of the experimental results found in [19]. 
With the exception of the least-squares method for the square, we have no theoretical 
foundation for any of our results, since all domains considered are polygonal. All ex- 

periments have been performed on an IBM 360/65 system. Computations have been 
done in double precision to minimize roundoff difficulties, unless otherwise noted 

(Tables 5.5 and 5.7). We consider model Problem 1: 

Au = 2e(X+Y) inRs, u e(x+Y) in aRs. 

For the least-squares method, Table 5.1 presents evidence of optimal fourth-order con- 
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vergence for the subspace Sh2,4 of bicubic splines. Along with the more comprehensive 
sensitivity study in Table 5.2, these results indicate that the least-squares method is not 
very sensitive to the choice of the boundary weighting y. 

TABLE 5.1. Problem 1, Least Squares, Bicubic Splines, Wide Parameter Range 

ly h LI Error L2 Reduction L., Error L.o Reduction 
(X io- 5) (X 10- 4) 

10 1/6 .414 - .352 

1/8 .129 4.06 .113 3.95 
1/10 .0521 4.04 .0466 3.97 
1/12 .025 4.03 .0226 3.97 

100 1/6 .396 --- .158 _ 
1/8 .125 4.00 .0517 3.87 
1/10 .0512 4.00 .0222 3.78 
1/12 .0247 4.00 .0111 3.82 

1000 1/6 .392 --- .163 -- 

1/8 .124 3.99 .0533 3.90 
1/10 .0510 3.99 .0222 3.92 
1/12 .0246 4.00 .0109 3.93 

TABLE 5.2. Problem 1, Least Squares, Bicubic Splines, Full Parameter Study 

h z L2 Error (x 10-5) L,,Error (x 10-4) 

1/5 1 1.68 2.06 
4 .979 1.02 

64 .826 .357 
256 .814 .324 

4096 .809 .331 
1/8 1 .189 .325 

4 .135 .160 
64 .125 .0559 

256 .125 .0525 
4096 .124 .0536 

The results presented in Table 5.3 for the subspace S2h6 of biquintic splines 
demonstrate the greatly improved accuracy available if one is willing to pay the price 
of added bandwidth. The L2 error reduction is indicative of optimal 6th-order ac- 
curacy; the L., reduction does not evidence quite this high an order (using a least- 
squares fit to plot log(LO. error) as a function of log h, we determine a slope X = 
5.36). We see no reason why the actual L., error should not also be of 6th order and 
attribute our numerical results to the effect of roundoff error, which begins to contrib- 
ute more significantly when our approximation method becomes more accurate. We 
present only the results for ' = 100; a similar result is obtained with - = 1000. 
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TABLE 5.3. Problem 1, Least Squares, Biquintic Splines 

ly h L2 Error L2 Reduction Loo Error L., Reduction 
(x 10-8) (X 10- ) 

100 1/3 14.6 4.36 ----- 

1/4 2.48 6.15 .858 5.66 
1/6 .233 5.83 .104 5.20 
1/7 .0956 5.78 .0454 5.38 

For the case of biquadratic splines (type S*2 3), we have mentioned that error esti- 

mates do not indicate optimal 3rd-order convergence, and our results in Table 5.4 seem 
to show that only 2nd-order convergence should be expected. Our data for the L.. 
error are anomalous; we know that the L., error cannot be of higher order than that 
of L2 error, hence if we take smaller meshes, we predict this order also to go toward 2. 
Regardless, we see little to recommend the use of biquadratic splines. 

TABLE 5.4. Problem 1, Least Squares, Biquadratic Splines 

ly h L2 Error L2 Reduction Loo Error L., Reduction 
(X 10- 3) (X 10- 3) 

100 1/6 .295 - --- .900 ------- 

1/8 .153 2.29 .415 2.69 
1/10 .094 2.17 .224 2.75 

We have also used Problem 1 to make one study of the overall conditioning of 
the methods. Using double precision, we obtain an approximate solution and deter- 
mine its error ed (h). We then assume that 

(5.1) 11ed(h)11 = Ch2A + C'OdhUa, 

where a is the conditioning effect and 0d is the double-precision unit roundoff error. 
Similarly, if we compute in single precision, we determine an error e,(h) satisfying 

(5.2) 11es(h)11 = ChIA + COO h-a, 

where OS is single precision unit roundoff and OS > Od. If we assume that CoOdh` is 

negligible, the error "reduction" in Table 5.5 is essentially a in r(h) = 11es(h)11 - 

IIed(h)11 t C'Osh-7. Our results are not extensive, but they do evidence the O(h-4) 

conditioning for the least-squares method. A further conditioning study will be dis- 

cussed for one-dimensional problems in Section 7. 

TABLE 5.5. Problem 1, Least Squares, Bicubic Splines, Conditioning Study 
(Single Precision Computation) 

ly h L2 Error "Reduction" Loo Error "Reduction" 
(X 10- 4) (X lo-3) 

100 1/6 .807 ------- .158 ---------- 

1/12 16.0 -4.31 3.11 -4.30 

Proceeding on to similar studies with Method K, the results in Table 5.6 again 
demonstrate the optimal 4th-order convergence with bicubic splines; we omit the 

tabulation of the results for biquintic splines but mention that 6th-order convergence in 

L2error is shown. 
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TABLE 5.6. Problem 1, Method K, Bicubic Splines 

ly h L2 Error L2 Reduction L., Error L., Reduction 
(X 10-6) (x 10-5) 

10 1/6 3.96 -0- 48.0 
1/8 1.19 4.16 1.31 3.95 
1/10 .474 4.14 .541 3.96 
1/12 .224 4.12 .262 3.97 

1000 1/6 3.57 - 1.55 -- 

1/8 1.11 4.06 .502 3.91 
1/10 .449 4.06 .209 3.93 
1/12 .214 4.06 .102 3.94 

The conditioning study in Table 5.7 for Method K indicates that it experiences 
only an O(h-2) deterioration due to roundoff. 

TABLE 5.7. Problem 1, Method K, Bicubic Splines, Conditioning Study 
(Single Precision Computation) 

ly h L2 Error (x 10-4) "Reduction" 
100 1/6 .266 

1/8 .381 -1.25 
1/10 .696 -2.70 
1/12 1.02 -2.08 

In contrast to the least-squares method, Table 5.8 shows that even with quad- 
ratic splines Method K yields optimal 3rd-order accuracy. 

TABLE 5.8. Problem 1, Method K, Biquadratic Splines 

ly h L2 Error L2 Reduction L., Error L.o Reduction 
(X 10-4) (X 10- 3) 

100 1/6 1.97 - .844 -- 

1/8 .812 3.08 .385 2.73 
1/10 .404 3.14 .207 2.79 

As a fmal study with Problem 1, we present in Table 5.9 the results obtained 
with Nitsche's method, and note that we get the best overall results via this technique 
(compare with Tables 5.1 and 5.6). 

TABLE 5.9. Problem 1, Nitsche's Method, Bicubic Splines 

ly h L2 Error L2 Reduction L., Error L., Reduction 
(X 10-6) (x 10- 5) 

100 1/6 2.86 ---- 1.02 -- 
1/8 .929 3.90 .368 3.55 
1/10 .387 3.93 .163 3.66 

We have used Problem 2: 

Au =6xyex+Y(xy + x + y-3) in RS) 
u=0 on aRI, 
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which has solution u = 3xyex+Y(l - x) (1 - y) to compare least-squares with the Ray- 
leigh-Ritz method in which the approximating functions (bicubic splines) satisfy the 
homogeneous boundary conditions. In Table 5.10 the results of Herbold-Varga [12] 
via Rayleigh-Ritz are noted, while our computations via least squares with two boundary 
weightings are also included. The data indicate that with adequate weighting of bound- 
ary terms, one need not be troubled with satisfying boundary conditions to achieve ac- 
curate approximations, whereas underweighting the boundary ('y = 1) produces less 
desirable results. 

TABLE 5.10. Problem 2, Comparison of Rayleigh-Ritz and 
Least-Squares Lo,, Error (x 10-4) 

h Rayleigh-Ritz Order Least Squares Order Least Squares Order 
('y = 1) ('y =16) 

1/3 10.8 ------- --------- - ------- ----- 

1/4 3.57 3.85 21.3 ------- 5.36 ------- 

1/5 1.53 3.80 7.40 4.74 2.23 3.93 
1/6 .766 3.80 --------- ------- ------ ------- 

1/7 .419 3.91 --------- ------- ------ ------ 

1/8 --------- ------ .753 4.86 .342 3.99 
1/10 --------- ------ .251 4.92 .144 3.89 

We also use Problem 2 to illustrate the oscillatory behavior of the pointwise error in 
the least-squares approximation by presenting in Figure 5.1 a plot of the error on the 
cross-section at y = .5 for two different boundary weights y = 1 (solid line) and y = 
32 (broken line). Notice how the larger weight has forced the boundary condition to 
be more nearly satisfied. 

FIGURE 5.1. Pointwise Error (x 10- 5) at y = .5, Problem 2, Least Squares) 

30. 

20. - - _r__ 

-30 L1T l I ~~~~I I I 1\ E 

10. 

I 0.~ ~~~~~~~~~ 

20. / 

-10. A7 

- 40 __ 

- 50. _ = == == 
0. .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 

We shall refer to Problem 3: 
Au = ir in Rs with solution 
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u = xy ln(x2 + y2) + (x2 -y2) tan-1 y/x + (Qr/2)y2 

and boundary data determined accordingly as the "singular" problem, although the 
singularity actually occurs in the third derivatives of the solution (that is, u E H3-,). 
Thus, we may only anticipate from (3.6) at most 3rd-order convergence in L2, for any 
qh space, k > 4. Indeed, in Table 5.11, we see that the L2 error is clearly reduced 
as O(h -3) for a wide range of parameters. Interestingly, the reduction in Loo is clearly 
second order; it appears that for nonsmooth solutions the Loo estimates obtainable via 
Sobolev's lemma (see, for example, [1]) may be sharp. 

TABLE 5.11. Problem 3, Least Squares, Bicubic Splines 

-y h L2 Error L2 Reduction Loo Error Loo Reduction 
(X l0-'4) (X 10- 3) 

4 1/5 1.23 ------- 3.57 ------- 

1/8 .301 3.00 1.39 2.00 

1/10 .154 3.00 .892 2.00 

64 1/5 .903 ------- 1.86 ------- 

1/8 .221 3.00 .724 2.00 

1/10 .113 3.00 .464 2.00 

1024 1/5 .410 .699 

1/8 .174 3.00 .273 2.00 

1/10 .089 3.00 .175 2.00 

We mention that we obtain exactly the same convergence orders using quintic 
splines and that the same behavior is evidenced with Method K. 

We also investigate the error on a subdomain (namely, (?, 1) x (?, 1)) away from 
the origin, at which the singularity in the 3rd derivative of the solution occurs. In- 

terestingly, the error reduction appears (Table 5.12) to be the optimal 4th order for 

bicubic splines; a similar experiment with biquintics yields approximately 6th-order 
reduction. Hence, the effect of the singularity is not felt globally. 

TABLE 5.12. Problem 5, Least Squares, Bicubic Splines, Subdomain Error 

ly h L2 Error L2 Reduction Loo Error Lo. Reduction 
(X 10-6) (X 10-5) 

100 1/4 5.35 5.49 

1/6 .978 4.19 .929 4.38 

1/8 .308 4.01 .273 4.26 

1/10 .127 3.98 .110 4.08 

6. Other Domains. We define Problem 4: 

Au + euxy =(2+e)ex+Y inRs, 
u = eX+Y on aRs. 

We may consider this to be merely a problem in which a mixed second partial deriva- 
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tive occurs, or as a simulation of a Poisson problem on a parallelogram RP 0 with 
angle at the origin 7r/o (1 < a- < 2) in (x', y') coordinates by changing variables: 

= --tan 7r/1,x = x x' + y', y = 1 + 62y', e = 2/ 1 ? 2. We determine that 7r/o= 

sec-1(2/e). The least-squares theory of [71 yields no error estimates. We present here 
only results corresponding to e = \/2 (od = 3/4) with bicubic splines as the approxi- 
mating functions. The results for least squares and Method K appear in Tables 6.1 and 
6.2, respectively. 

Notice that while sensitivity with respect to y is not too marked for least squares, 
there is some decrease in error reduction for y = 256, the largest weight chosen. Con- 
trasting, the L2 error reductions of Method K are definitely 4th order (as proved in [6]) 
with only slight sensitivity noted. Similar experiments with e = N produce even more 
pronounced evidence that the boundary term should not be overweighted in least 
squares as the operator becomes less elliptic (e - 2), while Method K shows no such 
difficulty. 

TABLE 6.1. Problem 4, Least Squares, Bicubic Splines 

7 h L2 Error L2 Reduction Loo Error Lc. Reduction 
(X 10-6) (X 10-5) 

4 1/4 24.6 -------- 9.00 ------- 

1/8 1.49 4.04 .583 3.95 
1/16 .0883 4.08 .040 3.86 

64 1/4 21.1 ------- 7.63 ------- 
1/8 1.25 4.08 .520 3.87 
1/16 .0814 3.94 .034 3.93 

256 1/4 20.1 ------- 6.23 ------- 
1/8 1.52 3.72 .562 3.47 

1/16 .146 3.39 .050 3.48 

TABLE 6.2. Problem 4, Method K, Bicubic Splines 

7 h L2 Error L2 Reduction Loo. Error Loo Reduction 
(X 10- 5) (X 10-4) 

64 1/4 1.95 ------- .720 ------- 

1/6 .368 4.11 .151 3.86 
1/8 .113 4.09 .049 3.89 

256 1/4 1.87 ------- .623 ------- 

1/6 .367 4.02 .135 3.77 
1/8 .114 4.06 .046 3.76 

Our next experiment is a true departure from the square. We study two prob- 
lems on an L-shaped domain RL, i.e., a six-sided rectilinear domain with one interior 
angle 31T/2 and five interior angles ir/2. For the problem Au = 2ex +Y in RL = 

Rs\{(?, 1) x (0, 1)}, u = eX+Y on aRL, we present in Tables 6.3 and 6.4 evidence 
that even for this notoriously difficult domain on which to compute we obtain optimal 
convergence. 
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TABLE 6.3. L-Shaped Domain, Least Squares, Bicubic Splines, Exponential Data 

-y h L2 Error L2 Reduction L ,. Error Loo Reduction 
(X 10- 5) (X 10- 5) 

100 1/4 1.98 ------- 7.49 ------- 

1/6 .371 4.13 1.57 3.85 
1/8 .124 3.81 .518 3.86 
1/10 .049 4.10 .223 3.78 

TABLE 6.4. L-Shaped Domain, Method K, Bicubic Splines, Exponential Data 

-y h L2 Error L2 Reduction Lx. Error Lx. Reduction 
(XI 10-5) (X 10-5) 

100 1/4 1.83 ------ 7.23 ------- 
1/6 .335 4.19 1.48 3.91 

1/8 .105 4.03 .484 3.89 

1/10 .042 4.14 .205 3.85 

In order to study a "singular" problem, we orient RL = RS\{ (0, x) x (0, ?)}. 
If we consider the problem Au = ir in RL, u(?2, y) = 0 on 0 < y < ?2, u(x, 0) = 0 on 

< ? x < 1, with the other boundary data computable from the solution 

u(x, y) = (x-'h)y ln [(x-y2)2 + y2] + [(X-?y)2 - y2 ] tan- 1 Y +r y2 

we have placed the singularity at (?, 0), not the reentrant corner. Our results in 
Tables 6.5 and 6.6 for least squares and Method K respectively show that we obtain 

the same 3rd-order L2 reductions and 2nd-order Loo reductions for this domain as in 

the case of the square (Problem 3, Section 4). Even so, it may be that for smaller 

meshes the error reductions will evidence a pollution due to the singularity. 

TABLE 6.5. L-Shaped Domain, Least Squares, Bicubic Splines, 

Singularity Away From Reentrant Corner 

-y h L2Error L2 Reduction Loo Error LOO Reduction 

(X 10-4) (X 10- 3) 

100 1/4 1.79 ------- 2.29 ------- 

1/6 .522 3.04 1.03 1.97 

1/8 .226 2.92 .583 1.99 

TABLE 6.6. L-Shaped Domain, Method K, Bicubic Splines, 
Singularity Away from Reentrant Corner 

ly h L2 Error L2 Reduction Loo Error L., Reduction 
(X 10-4) (X 10-3) 

[00 1/4 1.68 -------- 2.32 -------- 

1/6 .496 3.02 1.05 1.97 
1/8 .208 3.02 .592 1.99 
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Finally, an attempt was made to place the singularity right at the reentrant cor- 
ner. For both methods, the evidence is that overweighting the boundary term ampli- 
fies the ill effect of the geometry and optimal order of convergence is not evidenced. 

7. One-Dimensional Studies; Conditioning Effects. Quite obviously the same 
methods we have been considering here can be applied to linear boundary value problems 
of ordinary differential equations. On these problems it is economically feasible to con- 
sider quite small mesh sizes and hence, recalling from (5.1) that II ed(h)II = Chx + 
C'Odh-, we may allow h to become small enough that the error "reductions" are 
actually estimates of o. 

Since we have not included any discussion of the biharmonic problem, we shall 
only mention here that an analogous fourth-order boundary value problem has been 
studied, and that least squares evidences O(h-8) conditioning, while a scheme like 
Method K shows only O(h-4) deterioration. 

Our main concern is with second-order boundary value problems and we shall 
study 

-u" + Cu =f on (0, 1), C> 1, 
(7.1) u(O) = u0, u(1) = ul. 

In particular, we take C = 1, u = e4x and f = -15e4x. If we define AO = -pb" + CO, 
then by analogy to (3.2), if we define 

(7.2) L(4, X) = (A4', AX) + yh-3 [4(1)X(l) + 4(O)x(O)] 

then u satisfies 

(7.3) L(u, X) = (f,Ax) + yh-3 [uX() + uOX(O)] for all X EH2(R) 

and hence the least-squares method is: 
Find w E S", k such that 

(7.4) L(w, x) = (f, Ax) + yh3[ulx(l) + uOX(0)] for all x ES2 k. 

Similarly, if we define 

(7.5) K(4, X) = h3L(4, X) + h [(A, X) - (, x -(, X)] 

then the analog of Method K is to find w E S" k such that 

K(w, X) = (f, h3AX + X) + [u1x(l) + u0X(0)] 

(7.6) + h[uox'(O) - u1x'(1)] for all X ES2, k. 

The results presented in Table 7.1 for least squares with biquintic splines show 
optimal 6th-order error reduction before roundoff sets in, at which time the indica- 
tion of O(h-4) conditioning is evident. The data for Method K in Table 7.2 also 
show optimal convergence and roundoff becomes a problem only for much smaller h, 
reflective of the O(h-2) conditioning. Notice that even when roundoff appears, the 
approximations are extremely accurate. 
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TABLE 7.1. Two-Point Boundary Value Problem, Least Squares, Biquintic Splines 

-y h L2 Error L2 Reduction Loo Error L<o Reduction 
100 1/10 .188 x 10- 5- .730 x 10 5 - 

1/25 .790 x 10-8 5.97 .404 x 10-7 5.67 

1/50 .121 x 10-9 6.03 .691 x 10-9 5.87 

1/75 .172 x 10-9 -0.86 .248 x 10-9 2.52 

1/100 .560 x 10-9 -4.12 .791 x 10-9 -4.02 

TABLE 7.2. Two-Point Boundary Value Problem, Method K, Biquintic Splines 

ly h L2 Error L2 Reduction Loo Error Loo Reduction 
100 1/25 .786 x 10-8 - .396 x 10-7 - 

1/50 .121 x 10-9 6.03 .679 x 10-9 5.87 

1/75 .110 x 10o1O 5.90 .619 x 10-1O 5.91 

1/100 .678 x 10-11 1.70 .119 x 10o1O 5.72 

1/125 .109 x lo1O -2.13 .158 x 10-1O -1.26 

8. Conclusions; Further Investigations. We have clearly demonstrated the poten- 
tial of these approximation methods, perhaps especially Method K, as practically appli- 
cable schemes, and have shown that we need not worry too much about sensitivity to 
boundary weighting or effects of ill-conditioning. In [19], we have considered several 
additional classes of problems, e.g., biharmonic problems, general second-order constant 
coefficient equations, several methods for parabolic problems, some penalty methods of 
Babuska [3], [221, [231, and some methods involving indefinite bilinear forms due to 
Schatz. We are currently considering problems with variable coefficients via the least- 
squares method and the application of these ideas to periodic boundary value problems. 
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